Synthesis of (+)-8-Deoxyvernolepin

Rosendo Hernández,^a María S. Rodríguez,^b Silvia M. Velázquez,^a Ernesto Suárez^{*a}

^aInstituto de Productos Naturales y Agrobiología de C.S.I.C., Carretera de La Esperanza 2, La Laguna, Tenerife, Spain, ^bDepartamento de Química Orgánica, Universidad de La Laguna, Tenerife, Spain

Abstract: A short and efficient synthesis of (+)-8-deoxyvernolepin 2 from (-)- α -santonin, by functionalization of the angular methyl from a β -alkoxy radical generated by reaction of the alcohol with diphenylselenium hydroxyacetate and 1,4-fragmentation of a γ -hydroxylstannane using hypervalent organoiodine reagents as the key steps, is described. The most important structural features of this compound, the δ -valerolactone cis-fused to ring B moiety and the angular vinyl group, are introduced in the same step.

The elemane sesquiterpene dilactone (+)-vernolepin 1^1 possesses a synthetically interesting 2-oxa-*cis*-decalin unit having an angular vinyl group. This feature and its remarkable cytotoxic and antitumoral activity have stimulated several synthetic approaches and total syntheses.²

(+)-8-Deoxyvernolepin 2 that presents more potent activity against tumor cells *in vitro* cultures than the naturally occurring (+)-vernolepin^{3a} has also been synthetized first in racemic³ and more recently in optically active form.⁴ All these procedures require in the key step cleavage by ozonolysis of ring A of a *trans*-fused decalin and then the δ -valerolactone moiety and angular vinyl group are accomplished in multi-step sequences.

In this communication we describe a short and efficient synthesis of (+)-8-deoxyvernolepin 2 in which the *cis*-fused δ -valerolactone AB-ring system and the angular vinyl group were accomplished, in excellent yield, in the same step. In our approach the key steps are: the functionalization of the angular methyl group at C-10 by hydrogen abstraction promoted by an alkoxy radical generated at C-6 and the regioselective cleavage of the C₂-C₃ bond by β -fragmentation of an alkoxy radical at C-3 (Scheme 1). In both cases the reagents and methodology have been developed recently in this laboratory.⁵

The starting point of our synthesis was β -tetrahydrosantonin 4 which was prepared from α -santonin by the known two-step procedure.⁶ α -Santonin, a commercially available sesquiterpene and its hydro derivatives

Reagents and Conditions: (a) (i) NaOH (10 equiv), H₂O, reflux, 1h; (ii) 5% aqueous HCl; (iii) CH₂N₂ (excess), CH₂Cl₂, 62% overall. (b) Ph₂Se(OH)OAc (2 equiv), I₂ (1 equiv), cyclohexane, hv (2x80 W tungsten-filament lamps), reflux, 3h, 84%. (c) ZnI₂ (1.6 equiv), Ac₂O, rt, 72 h, 100%. (d) (i) PhSeCl (1.75 equiv), BF₃.etherate (20 equiv), THF, rt, 100%; (ii) H₂O₂, 30% (0.38 ml), acetone, 0 °C to rt, 5 h, 80%. (e) Bu₃SnLi (4 equiv), THF, -78 °C, 6 h, 87%. (f) KOH (5 equiv), MeOH, rt, 30 min, 90%. (g) PhI(OAc)₂ (1.5 equiv), I₂ (0.8 equiv), cyclohexane, hv (2x80 W tungsten-filament lamps), 40 °C, 35 min, 100 %.

have been frequently employed as useful chiral starting materials for the synthesis of a variety of sesquiterpenoids.^{2a}

 β -Tetrahydrosantonin 4 on treatment with 3% aqueous NaOH, careful neutralization with 5% aqueous HCl, and excess of ethereal diazomethane provided the 6 β -hydroxy-ester 5 in 61% yield. Functionalization of the angular methyl group from the 6 β -alkoxy radical was carried out under the conditions summarized in the Table (entries 1-2). Irradiation of a cyclohexane solution of 5 with visible light in the presence of (diacetoxy-iodo)benzene (DIB)^{5a} and iodine gave the epoxy-ester 6 in good yield. A better yield was obtained when the reaction was performed with diphenylselenium hydroxyacetate as oxidant agent.⁷ An analogous 6,14-oxolane has been obtained as a by-product in low yield (5 %) in the synthesis of rishitin, using the Barton reaction by photolysis of the corresponding 6-nitrite.⁸

Entry	Substrate	Reagent	Conditions		Products
			Temp. (°C)	Time (h)	(Yields %)
1	5	DIB/I ₂ (1.5/1)	40-43	5	6 (65)
2	5	Ph2Se(OH)OAc/I2 (2/1)	reflux	3	6 (84)
3	12	DIB/I ₂ (1.5/0.8)	40-42	0.5	13 (100)
4	12	HgO/I ₂ (1.5/0.8)	reflux	1.5	13 (100)
5	10	DIB/I ₂ (1.5/0.8)	40-42	0.5	11 (70), 14 (19)
6	10	DIB/I ₂ (1.5/0.8) ^b	40-42	0.5	11 (100)

Table. Alkoxy Radical Reactions^a

^{a)}All reactions were performed in cyclohexane under irradiation with two 80 W tungsten-filament lamps. ^{b)}A stream of oxygen was bubbled through the reaction mixture. DIB = (diacetoxyiodo)benzene.

Upon treatment of 6 with acetic anhydride and zinc iodide⁹ regioselective cleavage of the C₆-O bond of the tetrahydrofuran ring occurred with concomitant lactonization and inversion of configuration to give as the sole product the 14-acetate derivative 7.

Scheme 2

The hemiacetal 12 obtained by hydrolysis of acetate 7 was treated with DIB/I_{25b} (entry 3) or HgO/I₂ (entry 4) in order to study the regioselectivity of the β -fragmentation of the 3-alkoxy radical. As expected, the cleavage occurs exclusively at the C₃-C₄ bond to give the undesirable 4-iodo-spiro- δ -valerolactone 13, no products derived from the cleavage of the C₂-C₃ bond being detected in any case (Scheme 2). In order to avoid this undesirable β -fragmentation reaction we proceeded as follows: phenylselenylation of 7, with PhSeCl in the presence of boron trifluoride etherate, ¹⁰ followed by oxidative deselenylation (30 % H₂O₂), gave the enone 8 in 80 % yield, which by Michael addition of lithium tributyltin¹¹ (generated from hexabutylditin and metallic lithium¹²) gave the β -keto-stannane derivative 9, and subsequent hydrolysis of the acetyl group produced the hemiacetal 10. Oxidative 1,4-fragmentation¹³ of hemiacetal 10 was performed by photolysis with visible light in the presence of DIB/I₂ (entry 5) to give (+)-8-deoxytetrahydrovernolepin 11 and the iodo-derivative 14 in 70 and 19 % yield, respectively. Since the substitution of the tributyltin group by iodine is a radical process that is inhibited by oxygen¹⁴ if the photolysis is performed bubbling oxygen through the reaction mixture, complete regioselectivity in the β -fragmentation and quantitative yield of compound 11 were obtained (entry 6).

Conversion of (+)-8-deoxytetrahydrovernolepin 11 into (+)-8-deoxyvernolepin 2 has been previously accomplished,⁴ and therefore the procedure followed constitutes the formal synthesis of the title compound.

Acknowledgement: This work was supported by the Investigation Programme n^a PB90-0083 of the Dirección General de Investigación Científica y Técnica. S.M.V. thanks the Ministerio de Educación y Ciencia, Spain, for a fellowship.

REFERENCES AND NOTES

- Kupchan, S.M.; Hemingway, R.; Werner, D.; Karim, A. J. Am. Chem. Soc., 1968, 90, 3596-3597; Kupchan, S.M.; Hemingway, R.; Werner, D.; Karim, A.; McPhall, A.; Sim, G.A. J. Org. Chem., 1969, 34, 3903-3908.
- Heathcock, C.H.; Graham, S.L.; Pirrung, M.C.; Plavac, F.; White, C.T. In *The Total Synthesis of Natural Products*, ApSimon, J. Ed.; Wiley-Interscience: New York, 1983, vol. 5; pp. 93-107; b) Wakamatsu, T.; Hara, H.; Ban, Y. J. Org. Chem., 1985, 50, 108-112; Kato, M.; Kido, F.; Masuda, Y.; Watanabe, M. J. Chem. Soc., Chem. Commun., 1992, 697-698.
- 3.a) Grieco, P.A.; Noguez, J.A.; Masaki, Y. J. Org. Chem., 1977, 42, 495-502; b) Grieco, P.A.; Noguez, J.A.; Masaki, Y. Tetrahedron Lett., 1975, 4213-4216.
- 4. Fujimoto, Y.; Miura, H.; Shimizu, T.; Tatsuno, T. Tetrahedron Lett., 1980, 21, 3409-3412; Watanabe, M.; Yoshikoshi, A. Chem. Lett., 1980, 1315-1318.
- 5.a) Armas, P.; Concepción, J.I.; Francisco, C.G.; Hernández, R.; Salazar, J.A.; Suárez, E. J. Chem. Soc., Perkin 1, 1989, 405-411; Concepción, J.I.; Francisco, C.G.; Hernández, R.; Salazar, J.A.; Suárez, E. Tetrahedron Lett., 1984, 25, 1953-1956. b) Armas, P.; Francisco, C.G.; Suárez, E. Angew. Chem., Int. Ed. Engl., 1992, 31, 772-774; Arencibia, M.T.; Freire, R.; Perales, A.; Rodríguez, M.S.; Suárez, E. J. Chem. Soc., Perkin 1 1991, 3349-3360; Hernández, R.; Marrero, J.J.; Suárez, E.; Perales, A. Tetrahedron Lett., 1988, 29, 5979-5982; Francisco, C.G.; Freire, R.; Rodríguez, M.S.; Suárez, E. Tetrahedron Lett., 1987, 28, 3397- 3400; Freire, R.; Hernández, R.; Rodríguez, M.S.; Suárez, R.; Rodríguez, M.S.; Suárez, R.; Rodríguez, M.S.; Suárez, B. 7 (1997, 28, 981-984).
- Piers, E.; Cheng, K.F. Can. J. Chem., 1968, 46, 377-383; Nozoe, T.; Asao, T.; Ando, M.; Takase, K. Tetrahedron Lett., 1967, 2821-2825; Piers, E.; Cheng, K.F. J. Chem. Soc., Chem. Commun., 1969, 562-563; Ando, M.; Nanaumi, K.; Nakagawa, T.; Asao, T.; Takase, K. Tetrahedron Lett., 1970, 3891-3894; Murai, A.; Abiko, A.; Ono, M.; Masamune, T. Bull. Chem. Soc. Jpn., 1982, 55, 1191-1194; Barton, D.H.R.; Levisalles, J.E.D.; Pinhey, J.T. J. Chem. Soc., 1962, 3472-3482; Cocker, W.; Gobisingh, H.; McMurry, T.B.H.; Nisbet, M.A. J. Chem. Soc., 1962, 1432-1440; Nakasaki, M.; Naemura, K. Bull. Chem. Soc. Jpn., 1964, 37, 1842-18.
- 7. Dorta, R.L.; Francisco, C.G.; Freire, R.; Suárez, E. Tetrahedron Lett., 1988, 29, 5429.
- Murai, A.; Nishizakura, K.; Katsui, N.; Masamune, T. Tetrahedron Lett., 1975, 4399-4402; Murai, A.; Nishizakura, K.; Katsui, N.; Masamune, T. Bull. Chem. Soc. Jpn., 1977, 50, 1206-1216; see also Ando, M.; Sakazume, Y.; Takase, K. C. A., 1980, 93, 71983d.
- 9. Benedetti, M.O.V.; Monteagudo, E.S.; Burton, G. J. Chem. Research (S), 1990, 248.
- 10. Tsuda, Y.; Hosoi, S.; Nakai, A.; Ohshima, T.; Sakai, Y.; Kiuchi, F. J. Chem. Soc., Chem. Commun., 1984, 1216-1217.
- 11. Still, W.S. J. Am. Chem. Soc., 1977, 99, 4836.
- 12. Tamborski, C.; Ford, F.E.; Soloski, E.J. J. Org. Chem., 1963, 28, 239.
- Nakatani, K.; Isoe, S. Tetrahedron Lett., 1984, 25, 5335-5338; ibid., 1985, 26, 2209-2212; Ochiai, M.; Ukita, T.; Nagao, Y.;
 Fujita, E. J. Chem. Soc., Chem. Commun., 1984, 1007-1008; ibid., 1985, 637-638; Ochiai, M.; Iwaki, S.; Ukita, T.; Nagao, Y.;
 Chem. Lett., 1967, 133-136.
- Crisp, T.G.; Glink, P.T. Tetrahedron Lett., 1992, 33, 4649-4652; Ingold, K.U.; Robert, B.P. In Free-Radical Substitution Reactions; Wiley-Interscience: New York, 1971, pp. 96-107; Percyre, M.; Quintard, J.P.; Rahm, A. In Tin in Organic Synthesis; Butterworths: London, 1987, pp. 134-141.

(Received in UK 19 April 1993)